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This research presents an experimental study on the Faraday instability in one-dimensional cells filled 
with a mixture of water and glycerol, and for a range forcing frequency between 10 and 60 Hz. It showed 
that for a particular forcing frequency, whose value depends on the width of the cell, an anomalous 
surface oscillation arises, that appears as a large wavelength mode oscillating subharmonically with 
respect to the normal modes predicted by the linear stability analysis. Since all others studied forcing 
frequency, the observed modes are in agreement with the ones theoretically predicted. 
 
Key words: Faraday Instability, non-linear dynamics 
 
PACS: 47.20.Dr, 47.20.Gv, 47.35.+i, 47.54.+r  

 
 
INTRODUCTION 
 
Faraday waves are excited when the free surface of a 
fluid layer is subjected to a periodic vertical acceleration 
(Faraday, 1831; Binks and van de Water, 1997; Kudrolli 
et al., 2001, Delon et al., 2009; Peña-Polo et al., 2014; 
Douady, 1990). When the acceleration exceeds a 
threshold value, surface waves appear oscillating at half 
the forcing frequency and with a critical wave number k. 
In the recent years, this system has been widely studied, 
both experimentally and theoretically, since it is a 
paradigm experiment for the investigation of pattern 
formation (Kumar and Tuckerman, 1994; Edwards and 
Fauve, 1993; Wernet et al., 2001), spatio-temporal 
phenomena (Epstein and Fineberg, 2004) and localized 
oscillations (Arbell and Fineberg, 2000). 

Different patterns such as stripes, squares, and 
hexagons can be selected at instability onset depending 
on the properties of the liquid, such as its density ρ and 
kinematic viscosity ν, the depth of the liquid  layer  h,  and 

the forcing frequency ω. It has been shown that in the 
case of relatively viscous liquids, with damp sidewall 
effects, the selected pattern is independent of the 
container shape. Since the boundary layer thickness at 
the free surface δ is of the magnitude order of (ν/ω)

1/2
, 

then, the product k δ gives an estimation of the influence 
of viscous forces on the Faraday instability. When k δ 
<<1, viscous effects are weak, while kδ >>1 implies that 
viscous effects are strong. Another important length scale 
in the problem is given by the liquid depth h. Indeed, the 
system behaviour is different depending if one is in the 
so-called deep-water limit (kh > 1) or the shallow water 
one (kh < 1). In the small viscosity (k δ <<1) and deep 
water (kh > 1) limits, in which we are interested in this 
paper, the deformation of the fluid surface can be 
described by normal modes obeying a Mathieu equation, 
that is, the system is analogous to coupled parametric 
oscillators (Benjamin and Ursell, 1954): 
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Here, ζ represents the amplitude of the surface 
deformation, σ is the surface tension of the liquid 
against air, a the amplitude of the forcing acceleration 
and g the acceleration of gravity. The dependence of the 
critical wavelength on the forcing frequency is given by 
the dispersion relation: 
 

 
 
In the case of deep water limit, that is kh > 1, we have 
that tanh( kh ) → 1. When gk is dominant the mode is a 
gravity wave, and when σk

3
/ρ dominates it is a capillary 

wave. 
Here, we present an experimental study on the 

Faraday instability, where we are mainly interested to 
the low frequency forcing regime corresponding to 
gravity waves. The liquid is contained in strongly 
elongated rectangular cells, that is, cells with a large 
aspect ratio Γ between the length l and the width d, so 
that the excited waves may be considered as one-
dimensional. We show that for some particular values of 
the forcing frequency and depending on the geometrical 
parameters of the cell, anomalous surface oscillations 
may appear. The wavelength of the anomalous mode is 
larger than the one predicted by the dispersion relation 
and the oscillation is subharmonic with respect to the 
ω/2 oscillation frequency predicted for normal modes. 
The nature of the anomalous mode is different from 
that of non-propagating solitons previously reported for 
the Faraday waves (Wu et al., 1984), even though chains 
of solitons of the same polarity could seem similar to 
the phenomenon here reported. The main difference is 
that in our case we do not observe localization of the 
oscillations. Indeed, once developed, the anomalous 
oscillation is an extended wave covering the entire fluid 
surface. Moreover, at difference with the behavior 
reported in Wu paper waves (Wu et al., 1984), we cannot 
create or delete individual solitons by applying a local 
perturbation. Another difference is that non propagating 
solitons exist also in annular resonator, while we do not 
observe the anomalous mode of oscillation in annular 
containers. Indeed, as we will see in the following, the 
origin of the anomalous mode of oscillation has to be 
searched in a strong resonance of the excited wave 
with the eigenmodes of the rectangular container, 
which takes place for a particular value of the forcing 
frequency at which the associated mode becomes two-
dimensional. Similar resonances have been previously 
reported for a square cell (Jimenez, 1973). 

 
 
 
 
EXPERIMENTAL SETUP 
 
This experiment was performed with three different rectangular 
cells. Two cells have the same width, d=1.4 cm, but different 
lengths l=13.7 cm and l=15.0 cm. The third cell is narrower, d=1 
cm, and has a length l=15 cm. The aspect ratio is Γ = 9.7, 10.7, 
and 15, for the cell 1, 2 and 3, respectively. For all the cells, 
the depth is 2 cm. The bottom and the main structure of the 
cells are made of Aluminium. The lateral walls of the cells are 
made of transparent Plexiglass so that it is possible to visualize the 
fluid. Because of capillary forces, if the cell is not fully filled with the 
fluid, we observe a meniscus. The meniscus oscillation creates 
surface waves that can perturb the onset of the parametric 
instability (Douady and Fauve, 1998). In order to avoid such 
perturbation, the cell has always been fully filled. However, we 
checked that the presence of a meniscus does not change the 
nature of the observations described in the following. As working 
fluids we have used pure distilled water, different percentages of 
Glycerol in distilled water and ethanol. The room temperature is 
maintained at 20.0 ± 0.5°C, and we verified that the temperature 
of the fluid remains constant during the experiments. Once filled 
with the fluid, the cell is mounted over a mechanical vibration 
exciter B&K (model 4809). The vibration exciter is driven by a 
sinusoidal forcing delivered by a HP function generator and 
amplified by a 300 W power hi-fi amplifier and provides a clean 
vertical acceleration: the horizontal component is less than 1% of 
the vertical one. 

A CCD camera is placed perpendicular to the main axis of the 
cell, in front of the transparent walls, in such a way to visualize 
the profile of the fluid free surface. The fluid is illuminated from 
above, and it is doped with black ink in order to avoid 
reflection from the bottom of the cell. Videos are recorded by 
means of a computer controlled frame grabber at 60 frames per 
second. By processing the recorded movies, we can measure the 
wavelength and the temporal oscillation frequency of the Faraday 
instability. 
 
 
EXPERIMENTAL RESULTS AND INTERPRETATION 
 

We measured the wavelength and the oscillation 
frequency of the Faraday instability in the range between 
10 and 60 Hz. The lower limit is due to our shaker 
acceleration range, the features of Faraday waves set the 
upper one. For most of the experiments, the temporal 
oscillation frequency of the surface waves is half the 
frequency of the sinusoidal forcing, as expected for 
parametric waves, and the wavelength corresponds to 
the one predicted by the linear stability analysis. 
However, for a very narrow range of frequency, that 
depends on the cell width and on the fluid properties, we 
have observed anomalous surface oscillations that 
appear as large adjacent bumps, oscillating in phase. 
As compared to Wu paper (Wu et al., 1984), the 
anomalous wave could appear as a chain of solitons of 
the same polarity. However, we have never observed 
either a single isolated soliton or a chain of solitons of 
opposite polarity, thus confirming our conjecture of an 
extended wave oscillation even though of different origin 
with respect to normal oscillations. 

Figure 1a shows the wavelength of the surface 
oscillations measured as a function of the forcing 
frequency f, in the case of water and for the cell number  
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Figure 1. a) The wavelength of the surface wave (in cm) as a function of the driving 
frequency (in Hz) in the case of pure water and for the 15x1.4 cm cell. The dots 
represent observed wavelengths and the line the dispersion relation predicted 
theoretically by the linear stability analysis. The bars correspond to the experimental 
incertitude on the measurement. b) Profile of the surface waves, projected on the XZ 
plane, for f= 24, 22 and 20 Hz. 

 
 
 
1, d=1.4 cm, l=13.7 cm. The bars correspond to the 
experimental incertitude on the measurement. The dots 
represent the measured wavelengths λ and the line is 
the dispersion relation predicted theoretically by the 
linear stability analysis if we consider a one-dimensional 
mode, that is 
 

 
 

with z0 the unperturbed surface height, kx l=nπ with 

n=0,1,2,3,… and ky d=qπ with q=1. This is equivalent to 

assume that, while several wavelengths are present in 
the longitudinal direction,  only  half  a  wavelength  fits 

along the width of the cell, and this for a large range 
of forcing frequencies. Under this approximation, the 

excited wavenumber is almost equivalent to 
kx, that is, the quantity that we have measured. It may 

be seen on Figure 1a that this approximation holds quite 
well for the whole range of forcing frequencies explored, 
except for a singular point, at fa=22 Hz, that 

corresponds to the appearance of the anomalous 
oscillation. Correspondingly, the anomalous wavelength 
λa=4.19±0.2 cm is much larger that the one theoretically 

predicted (λ=1.8 cm). 
In Figure 1b, one can visualize the  patterns observed
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Figure 2. Spatio-temporal diagram of the wave amplitude obtained from the side view of 
the surface wave. t* is the time scaled by the driving frequency, x the length coordinate. 
The surface wave has been perturbed by blowing an air jet. After the end of the perturbation, 
the pattern re-became stable after only one oscillation of oscillator. Here, the fluid is pure 
water in the 13.7x1.4 cm cell. 

 
 
 
for forcing frequency below (20 Hz) and above (24 Hz) 

the anomalous frequency. If the same cell is filled with 
ethanol or with a 5% water-Glycerol mixture, then an 
anomalous pattern is still observed at fa = 22 Hz. 
However, the pattern wavelength depends on the fluid 
properties. Using a cell with the same width and a 
different length, cell number 2, d=1.4 cm and l=15 cm, 
does not change the experimental findings. We have 
verified, by closing part of the cell with a transverse wall, 
that the properties of the anomalous wave do not 
depend on the cell length. However, the driving frequency 
fa that generates the anomalous wave changes if one 
varies the width of the cell: the thinner the cell, the higher 
is the anomalous frequency. Indeed, for the cell number 
3, d=1 cm and l=15 cm, we find fa=32 Hz. If one uses a 
more viscous fluid, such as a 15% Glycerol in water, 
anomalous  waves  are  not  observed  anymore  for  the 

whole range of forcing frequency explored (from 10 up to 
60 Hz).  

In order to study the stability of the anomalous waves, 
we perturbed the system in two different ways. In the 
first case, after the appearance of the anomalous 
wave, we blew a pressured air jet on the free surface of 
the fluid. As shown in the spatio-temporal diagram of 
Figure 2, the pattern is highly unstable while the air jet is 
blown, but, once the perturbation is stopped, it becomes 
stable again after a few cycle of the driving. Note that in 
the case of solitons such a perturbation would have led 
to the disappearance or to the creation of individual 
localized oscillations, which is not the case here. This is 
a further indication that the anomalous wave is a fully 
spatially correlated mode, involving the whole fluid 
surface. 

The second stability test  that  we performed consists in  
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Figure 3. a) Profile of the surface waves, projected on the XZ plane, observed in the 15x1.4 cm cell 
filled with pure water when simultaneously oscillated at fa=22 Hz and fs=40 Hz. x is the length 

coordinate, z the height of the wave. b) Spatio-temporal diagram of the surface wave profile;. t*=tfa is 

the time scaled by the anomalous driving frequency. 

 
 
 
forcing frequencies: fa and f2, where fa represents the 
frequency that generates the anomalous waves of 
wavelength λa and f2 the frequency that generates an 
instability pattern of wavelength λ2. When the two 
frequencies are applied at the same time, the system 
shows the superposition of the two patterns with 
wavelength λa and λ2, no matters which frequency is 
applied first and if the second mode is applied below or 
above the onset of the first one. Figure 3 shows (a) the 
profile and (b) the spatio-temporal diagram of the surface 
waves observed in the cell with width d=1.4 cm and filled 
with pure water when simultaneously oscillated at fa =22 
Hz and fs=40 Hz. The incertitude on the measures of the 

onset of the instability does not allow to say if the 
onsets are varied by the presence of a second 
excitation mode. 

As mentioned above, the anomalous mode it is not a 
meniscus effect. Indeed, it can be observed either if a 
meniscus is not present,  that  is,  if  the  cell  is  perfectly 

filled, or when there is a negative or positive meniscus, 
respectively if the cell is not completely filled or if it is 
slightly too filled. However, the anomalous wave is very 
sensitive to frequency noise. In fact, the anomalous 
mode is observed only when the frequency bandwidth 
of the driving signal at fa is less than a few Hz. If this is 
not the case, as happens for example by driving the cell 
with a low quality synthesizer, the anomalous wave does 
not appear. More than this, vibrating the cell with a large 
spectrum noise around the signal always leads to a 
pattern with the wavelength predicted by the linear 
stability analysis. The anomalous wave is not observed 
also when using an annular cell. In fact, we performed 
some analogous measurement on an annular 1 cm width 
cell, having a diameter of 20 cm. In this case, we didn’t 
observe any surface wave with a wavelength significantly 
different from the one predicted by the linear stability 
analysis. 

This observation  also excludes the interpretation of the 
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Figure 4. Side view (XZ plane) of the anomalous surface wave at three different times: a) t*=0, b) t*=1 and 
c) t*=2. The black spot on the bellies of the standing wave are the reflection of the illuminating light in the direction 
of the camera. The contrast is inversed after one period (t*=4). The fluid is pure water, the size of the cell is 
14x1.4 cm. 

 
 
 

 
 

Figure 5. Transversal cut of the cell (ZY plane). Only the first part of the cell is illuminated (from above). a) 
When the surface wave has a positive slope in the left part of the cell, the light is reflected toward the camera. b) 
Only a little part of the light is reflected in the direction of the camera, when the surface presents a negative high in 
the left part of the cell. 

 
 
 
anomalous waves in terms of chains of solitons, which 
are indeed reported for annular geometry. 

The difference between the anomalous mode and the 
one predicted by the linear stability analysis is not only 
in the wavelength but also in the nature of the wave 
motion. In Figure 4 is shown a lateral view of the 
anomalous surface wave at three different times during 
a period of the driving signal. The black spot on the 
bellies of the standing wave are the reflection of the 
light that illuminates the cell from above. We can note 
that the reflected intensities from two adjacent bumps are 

not symmetrical. As schematically depicted in Figure 5, 
this can be interpreted, on a qualitative basis, by 
considering the different light that a bump scatters when 
it is close or far from the side of the cell where the CCD 
camera is placed. Indeed, when the surface wave has a 
positive slope close to this side of the cell, more light is 
reflected towards the camera (Figure 5a). On the 
contrary, when the slope of the wave is positive on the 
other side of the cell, less light is reflected in the direction 
of the camera (Figure 5b).  

The dynamics of the black spots of Figure 4, alternating 



 
 
 
 
periodically during the time, suggest that the anomalous 
wave is a twisted and two- dimensional mode. Indeed, 
the oscillations occur in the direction of the width of the 
cell (perpendicularly at the wave axis) and the period of 
alternation between left and right belly is Talt=4/fa. For 

this reason, if one observes the wave from aside, he 
always sees a stationary wave with positive bellies. 
 
 
DISCUSSION 
 
The anomalous surface wave here reported cannot be 
associated to any of the pattern experimentally observed 
in previous experiments on Faraday instability. Our 
interpretation is that the anomalous wave has its origin in 
a strong resonance of the fluid with the lateral dimension 
of the cell. The main reasons that bring us to this 
conclusion are the following: first, the only geometrical 
parameter that affects the anomalous surface is the width 
of the cell. Indeed, changing the length of the cell or the 
depth of the fluid does not change the properties of the 
anomalous mode. Secondly, if the fluid is too viscous one 
cannot observe the anomalous mode. Since it has been 
showed that for viscous fluids the instability pattern is 
independent on the shape of the container (Edwards and 
Fauve, 1993; Wernet et al., 2001), one can think that if 
the fluid is too viscous, the dissipation damps the 
resonance.  

By taking into account the experimental observations 
presented above, we can support our conjecture by 
considering the cell as a two-dimensional system and by 
decomposing the wavenumber of the excited mode, 

, in two components, a longitudinal one, kx 
l=nπ with n=0,1,2,3,… and a transverse one, ky d=qπ, by 
taking q=2. This means that for some particular values of 
the forcing frequency, those giving rise to the anomalous 
oscillation, one full wavelength fits along the width of the 
cell. If this is the case, we can recalculate the 
wavenumber, for example in the case of the first cell filled 
with water. If we take the anomalous point on the 
wavelength curve of Figure 1a (λx = 4.19±0.2 cm), this 

corresponds approximately to kx  whereas 

the transverse wavenumber is . We thus 
obtain k=2.3 cm

-1 
which, in the limit of the experimental 

errors and of the rough estimate, can be considered fairly 
well consistent with the theoretical curve.   

The two-dimensional character of the anomalous wave 
appears also in the twisted structure exhibited by the 
surface deformation, as shown in Figure 4. To explain the 
periodical alternation between left and right adjacent 
bumps, we can give the following qualitative argument. 
The transverse wavelength λy of the anomalous wave 
being approximately equal to the width d of the cell, we 
can assume λy=d and use the dispersion relation in the 
limit   of   deep   water   (kh>>1)   to  estimate  the  critical  
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frequency   for the appearance of the anomalous 
mode: 

 

  
 

where   is the fluid capillary length, approximately 
0.27 cm for pure water. By substituting the values of d for 
the cell 1 and 2, (d=1.4 and 1.0 cm), we find fa = 11.8 
and 15.2 Hz, respectively. These results are consistent 
with the experimental observations reported above. 

Moreover, these frequencies fit quite nicely with the 
subharmonics of the driving oscillation frequency. This 
means that the anomalous mode can be considered as a 
two-dimensional twisted mode, oscillating sub-
harmonically with respect to normal modes. 
 
 
Conclusion 

 
This research has shown that for some particular 
resonances with the lateral size of the cell, anomalous 
oscillations arise in rectangular geometry Faraday 
instability. We have shown that anomalous surface 
oscillations are a robust effect and cannot be assimilated 
to solitary waves. Anomalous oscillations are 
characterized by subharmonic spatial and temporal 
response with respect to normal modes. The study and 
the understanding of anomalous modes could be 
important in the design of pipeline or channels, in order to 
prevent anomalous waves from perturbing the functioning 
of the circuits (Jimenez 1973; Hsu and Kennedy, 1971). It 
would be then interesting to study these anomalous 
surface waves in other geometrical and physical 
conditions. 
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